Unexpected Swelling of Stiff DNA in a Polydisperse Crowded Environment.

نویسندگان

  • Hongsuk Kang
  • Ngo Minh Toan
  • Changbong Hyeon
  • D Thirumalai
چکیده

We investigate the conformations of DNA-like stiff chains, characterized by contour length (L) and persistence length (lp), in a variety of crowded environments containing monodisperse soft spherical (SS) and spherocylindrical (SC) particles, a mixture of SS and SC, and a milieu mimicking the composition of proteins in the Escherichia coli cytoplasm. The stiff chain, whose size modestly increases in SS crowders up to ϕ ≈ 0.1, is considerably more compact at low volume fractions (ϕ ≤ 0.2) in monodisperse SC particles than in a medium containing SS particles. A 1:1 mixture of SS and SC crowders induces greater chain compaction than the pure SS or SC crowders at the same ϕ, with the effect being highly nonadditive. We also discover a counterintuitive result that the polydisperse crowding environment, mimicking the composition of a cell lysate, swells the DNA-like polymer, which is in stark contrast to the size reduction of flexible polymers in the same milieu. Trapping of the stiff chain in a fluctuating tube-like environment created by large-sized crowders explains the dramatic increase in size and persistence length of the stiff chain. In the polydisperse medium, mimicking the cellular environment, the size of the DNA (or related RNA) is determined by L/lp. At low L/lp, the size of the polymer is unaffected, whereas there is a dramatic swelling at an intermediate value of L/lp. We use these results to provide insights into recent experiments on crowding effects on RNA and also make testable predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilateral teleoperation control to improve transparency in stiff environment with time delay

This paper proposes a new bilateral control scheme to ensure both transparency and robust stability under unknown constant time delay in stiff environment. Furthermore, this method guaranties suitable performance and robust stability when transition occurs between soft and stiff environments. This framework is composed of an adaptive sliding mode controller and an adaptive impedance controller,...

متن کامل

Brownian motion of stiff filaments in a crowded environment.

The thermal motion of stiff filaments in a crowded environment is highly constrained and anisotropic; it underlies the behavior of such disparate systems as polymer materials, nanocomposites, and the cell cytoskeleton. Despite decades of theoretical study, the fundamental dynamics of such systems remains a mystery. Using near-infrared video microscopy, we studied the thermal diffusion of indivi...

متن کامل

Local Annihilation Method ‎and‎ Some Stiff ‎Problems

In this article‎, ‎a new scheme inspired from collocation method is‎ ‎presented for numerical solution of stiff initial-value problems and Fredholm integral equations of the first kind based on the derivatives of residual function‎. ‎Then‎, ‎the error analysis‎ ‎of this method is investigated by presenting an error bound‎. ‎Numerical comparisons indicate that the‎ ‎presented method yields accur...

متن کامل

Structural and mechanical properties of individual human telomeric G-quadruplexes in molecularly crowded solutions

Recent experiments provided controversial observations that either parallel or non-parallel G-quadruplex exists in molecularly crowded buffers that mimic cellular environment. Here, we used laser tweezers to mechanically unfold structures in a human telomeric DNA fragment, 5'-(TTAGGG)4TTA, along three different trajectories. After the end-to-end distance of each unfolding geometry was measured,...

متن کامل

Crowding-Induced Hybridization of Single DNA Hairpins.

It is clear that a crowded environment influences the structure, dynamics, and interactions of biological molecules, but the complexity of this phenomenon demands the development of new experimental and theoretical approaches. Here we use two complementary single-molecule FRET techniques to show that the kinetics of DNA base pairing and unpairing, which are fundamental to both the biological ro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 137 34  شماره 

صفحات  -

تاریخ انتشار 2015